A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments
نویسندگان
چکیده
One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control.
منابع مشابه
Simplistic Sonar based SLAM for low-cost Unmanned Aerial Quadrocopter systems
GPS-denied environments pose a significant problem for unmanned aerial vehicles, or UAVs, operating autonomously within a confined airspace. In this paper, we outline and implement a basic algorithm to autonomously fly a quadcopter using low-cost sonar sensors in a GPS-denied environment. Furthermore, we outline a method for using simple sonar distance data to map our environment. Through the u...
متن کاملMVCSLAM: Mono-Vision Corner SLAM for Autonomous Micro-Helicopters in GPS Denied Environments
We present a real-time vision navigation and ranging method (VINAR) for the purpose of Simultaneous Localization and Mapping (SLAM) using monocular vision. Our navigation strategy assumes a GPS denied unknown environment, whose indoor architecture is represented via corner based feature points obtained through a monocular camera. We experiment on a case study mission of vision based SLAM throug...
متن کاملIndoor SLAM for Micro Aerial Vehicles Using Visual and Laser Sensor Fusion
This paper represents research in progress in Simultaneous Localization and Mapping (SLAM) for Micro Aerial Vehicles (MAVs) in the context of rescue and/or recognition navigation tasks in indoor environments. In this kind of applications, the MAV must rely on its own onboard sensors to autonomously navigate in unknown, hostile and GPS denied environments, such as ruined or semidemolished buildi...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملMonocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments
Autonomous micro aerial vehicles (MAVs) will soon play a major role in tasks such as search and rescue, environment monitoring, surveillance, and inspection. They allow us to easily access environments to which no humans or other vehicles can get access. This reduces the risk for both the people and the environment. For the above applications, it is, however, a requirement that the vehicle is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017